
Document-Level Entity-to-Entity Sentiment Analysis
with LSTM-Based Models

Belinda Li
Paul G. Allen School of Computer Science & Engineering

Univ. of Washington, Seattle, WA

Abstract

Most work in fine-grained sentiment analysis
is focused on predicting sentiment from within
a sentence. These sentences usually involve
only a single sentiment being expressed from
one holder to one target. Instead, we aim to
perform document-level entity-to-entity sen-
timent analysis, whereby we predict various
sentiments among all entities at the document
level. These sentiments may be expressed
within or across sentences, and different en-
tities may hold different sentiments towards
each other. Sentence-level models which pre-
dict a single sentiment do not generalize well
to our task, as they are unable to account for
cross-sentence sentiments. Therefore, we pro-
pose two novel LSTM-based architectures for
this task, and show that both models outper-
form sentence-level baselines. Surprisingly,
however, we find that our models do not out-
perform state-of-the-art SVM-based models.
In particular, we find that LSTM-based models
have difficulty classifying entities which ex-
press no sentiment towards each other, a lim-
itation which accounts for 60-80% of its mis-
takes on the development set.

1 Introduction

Historically, research in sentiment analysis has fo-
cused on finding the overall sentiment of a short
span of text, like tweets (Mohammad et al., 2013;
Tasoulis et al., 2018; Küçük and Can, 2018), prod-
uct reviews (Fang and Zhan, 2015), or movie re-
views (Pang and Lee, 2004). However, in recent
years, there has been a shift towards more fine-
grained opinion mining. Not only is the overall
sentiment of a piece of text determined, but the
opinion holder and target are also identified. This
allows for a much more nuanced understanding of
the sentiments expressed within a text.

Much of the work in fine-grained sentiment
analysis has focused on classifying sentiments

Figure 1: Graph showing the network of sentiments ex-
pressed amongst various entities in the Xinhua News
Agency article. Arrows are directed from opinion
holder to opinion target. Red arrows indicate negative
sentiment and green arrows indicate positive sentiment.
Disconnected nodes represent entities that are present
in the text, but do not participate in any sentiment rela-
tions, either as opinion holders or opinion targets.

within a single sentence, containing a single entity
pair mention. However, sentiments are expressed
in all types of texts, many of which contain mul-
tiple entity pairs and multiple mentions of each
entity. News articles in particular often encode
complex networks of opinions amongst a multi-
tude of entities. Many of these sentiments are ex-
pressed across sentences and cannot be captured
by sentence-level models. Take this article from
Xinhua News Agency as an example:

URGENT: Obama says U.S. recognizes
Tibet as part of China. United States
President Barack Obama Tuesday said
the U.S. government recognizes that Ti-
bet is part of the People’s Repub-
lic of China. He also said that the
United States supports the early re-
sumption of dialogue between the Chi-
nese government and representatives of

the Dalai Lama to resolve any concerns
and differences that the two sides may
have. “The United States respects the
sovereignty and territorial integrity of
China,” Obama said at a joint press
conference with Chinese President Hu
Jintao at Beijing’s Great Hall of the
People.

Five sentiments have been labelled within this ar-
ticle:

1. Obama is positive towards China

2. United States is positive towards China

3. China is positive towards Obama

4. Tibet is negative towards China

5. Tibet is negative towards Hu Jintao

The fifth sentiment, in particular, involves entities
that are never even mentioned in the same sen-
tence, requiring cross-sentence reasoning.

We formulate our task of entity-to-entity senti-
ment analysis in a pipelined manner. In the first
step, all entities within a document are extracted
and labelled. Co-reference resolution is performed
to identify all mentions of each entity. In the sec-
ond step, we consider each pair of entities and
classify their sentiment relationship into three pos-
sible types: positive, negative, or none. This is op-
posed to previous approaches which first identified
the sentiment of a text, and then the holder and
target of that sentiment (Kim and Hovy, 2006).
Such an approach works well for short texts ex-
pressing a single main sentiment, but works less
well for long documents containing multiple sen-
timent relations. As strong NER and coreference
(Lee et al., 2017) models exist already, we focus
the bulk of our work on the second task, allocating
the first task to preprocessing. We propose two
novel neural architectures for this task, and show
that it outperforms sentence-level baselines.

2 Data

We use five datasets from Choi et al. (2016) for
training, development, and testing. These datasets
contain the text of a document, and annotations for
each entity pair in the document. The training set
(“train-original”) comprises of news articles from
the Gigaword corpus1. Human-annotated labels

1LDC2014E13:TAC2014KBP English Corpus

were generated for this set via crowdsourcing. The
KBP set, derived from the KBP competition, was
used for development and testing. Gold-standard
annotations for this set were supplemented with
human annotations to create labels between all en-
tity pairs. The KBP set was then split, with 50%
of the documents being used for development and
50% for testing (“test-KBP”). The development
set itself was also split, as 50% of the development
data was used for hyper-parameter tuning (“dev-
tune”) and the rest for evaluation (“dev-eval”). A
second test set (“test-MPQA”) was also used, de-
rived from densely-labelled MPQA dataset.

2.1 Training Data
The distribution of the original training set does
not mimic that of the development and test sets,
most notably due to its lack of “none” labels. Such
domain differences can problematic for deep neu-
ral networks in NLP (Mou et al., 2016). Therefore,
to optimize our model’s performance, we make
two changes to the training set. First, we incor-
porate dev-tune into our training set, using dev-
eval for both hyper-parameter tuning and evalua-
tion. As dev-tune, dev-eval, and test-KBP are all
derived from the same corpus, their distributions
should match. Second, we supplement the train-
ing data with weakly generated “none” pairs. As
the original training set did not have annotations
between all pairs of entities within a document
(whereas all the other dev and test sets did), we
can generate new examples by finding un-labelled
pairs and assuming those pairs hold no sentiment.
We then randomly select 10% of the newly gener-
ated pairs and add them to the training data, which
was sufficient to increase the proportion of “none”
pairs in the training data to 85%, comparable to
the 80-85% found in the development and test
sets. Table 1 shows that the distribution of the new
training dataset (“train-new”) is now much closer
to that of the development and test sets.

2.2 Preprocessing
We use preprocessed data from Choi et al. (2016),
discarding part-of-speech tags and dependency
paths which are not used by our model. Instead,
the preprocessing pipeline for our model consists
of only three steps: tokenization, NER, and co-
reference resolution. Stanford CoreNLP (Man-
ning et al., 2014) was used for all three steps.
Following NER, entities of type date, duration,
money, time, and number were discarded, as they

Entities
Dataset Docs / Doc Neg None Pos % None
train-original 897 2.63 648 815 355 44.8
train-new 949 8.98 973 11306 1013 85.1
dev-tune 38 8.82 158 2349 365 81.8
dev-eval 37 9.08 174 2454 404 80.9
test-KBP 79 9.25 437 5459 718 82.5
test-MPQA 54 11.72 521 6464 625 84.9

Table 1: Dataset statistics. For each dataset, shows the total number of articles, the average number of entities
within each article, the total number of negative pairs, none pairs, positive pairs, and the percentage of all pairs
that are none.

do not tend to participate in sentiment relations.
Coreference resolution was performed on the re-
maining entities to isolate all mentions of the en-
tity.

3 Models

We formulate our task by considering all entities
within a document as potential holders and targets
of sentiments. If there are E entities in the doc-
ument, then we consider E(E − 1) holder-target
pairs for the document. For each pair, we clas-
sify its sentiment into one of {positive, negative,
none}. We explore two different neural models
for this task.

3.1 Attentive BiLSTM (“ABL”)

Inputs. We concatenate three sets of embed-
dings to represent each token xt: word embed-
dings (wt), learned polarity embeddings (pt), and
learned holder-target embeddings (et):

xt = [wt, pt, et]

Pre-trained GloVe vectors (Pennington et al.,
2014) are used for word embeddings. We also
explicitly encode the polarity of known subjectiv-
ity clues (words which may be used in a positive
or negative context) by appending embeddings for
its polarity. We use a pre-existing lexicon of over
8000 subjectivity clues from Wilson et al. (2005)
and learn different embeddings for positive, neg-
ative, and neutral words. Finally, our model ar-
chitecture has no notion of which tokens are hold-
ers and which are targets as it treats all tokens the
same. Thus, we rely on a holder-target embedding
to encode whether each token is part of a holder or
target span.
LSTM. We feed each embedded token xt into a

bidirectional LSTM to encode it within its context.

ft,δ = σ(Wf [xt, ht+δ,δ] + bi)

ot,δ = σ(Wo[xt, ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt, ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ
ht,δ = ot,δ ◦ tanh(ct,δ)
x∗t = [ht,1, ht,−1]

whereby δ = {1,−1} indicates directionality of
the LSTM. The final representation of the token x∗t
is a concatenation of the output from the forward
LSTM and that from the backward LSTM.
Attention. We use an attentional mecha-
nism over all contextually-encoded tokens x∗t ∈
{x∗0, . . . , x∗T } to extract a final sentiment score si,j
from holder i to target j.

αt = W · x∗t

ai,j,t =
exp (αt)∑T
k=0 exp (αk)

si,j =

T∑
t=0

ai,j,t · x∗t

Hyperparameters. The GloVe embeddings,
learned polarity embeddings, and learned holder-
target embeddings are 50-dimensional each. For
the biLSTM, we use 2 stacked layers and a hidden
dimension of 50. We apply a dropout to the hid-
den layer of the LSTM with probability 0.2. For
training, we optimize the model using Adam with
α = 1e-3, β1 = 0.9, β2 = 0.999, ε = 1e-8. We use
a batch size of 50, training up to 15 epochs, with
epoch 6 being selected as the optimal epoch based
on development set performance.

3.2 Pairwise Attentive BiLSTM (“PABL”)
We introduce a novel architecture for the classifi-
cation of opinion sentiment. This model is built

Figure 2: ABL architecture. Embedded tokens are
passed into a 2-layer bidirectional LSTM. An atten-
tive sum is performed over the outputs to generate final
scores. In this example, blue is used to represent the
holder, while red is used to represent the target. Sam-
ple text is only one sentence, but actual documents are
much longer.

Figure 3: PABL architecture. Span representations are
generated by concatenating encoded start and end to-
kens with an attention mechanisms over embedded to-
kens in the span. Next, each holder span and target
span are concatenated to form pairwise representations,
which are fed through a linear operator to generate pair-
wise mention scores. Finally, mention scores are aggre-
gated using LogSumExp.

off of ABL, with additional connections added
on top. We borrow components of this model
from state-of-the-art models in relation extraction
(Verga et al., 2018) and co-reference resolution
(Lee et al., 2017).
Inputs. We concatenate two sets of embeddings
to represent each token xt: word embeddings (wt)
and polarity embeddings (pt):

xt = [wt, pt]

Both embeddings are identical to those used in
ABL. Note that we do not need to append holder-
target embeddings as the relation is built into the
model architecture itself.
LSTM. As in ABL, we use a bidirectional LSTM
to contextually encode each embedded token xt.

x∗t = [ht,1, ht,−1]

Span Representations. To represent multi-word
mentions and entities (“spans”), we use span rep-
resentations based on those used by Lee et al.
(2017). For each span i, we take the LSTM-
encoded tokens in the span and concatenate them
in the following manner:

gi = [x∗START (i), x
∗
END(i), x̂i]

whereby x∗START (i) and x∗END(i) are the endpoints
of the span, and x̂t is computed using an attention
mechanism over each embedded word in the span.
Following (Lee et al., 2017)’s work, we compute
the attentive representation x̂i as a weighted sum
of each embedded word xt in the span. We make
a slight modification in that we compute atten-
tion directly from the embedded token themselves,
rather than deriving them from the LSTM-encoded
outputs.

αt = wα · FFNNα(xt)

ai,t =
exp (αt)∑END(i)

k=START (i) exp (αk)

x̂i =
END(i)∑

t=START (i)

ai,t · xt

Pairwise Scoring. Verga et al. (2018) scores pairs
of triples using an MLP followed by a bilinear
operator. To reduce the number of parameters,
we instead use a linear transformation of con-
catenated holder-target representations. We rep-
resent all combinations of the n holder mentions

gholder1 , gholder2 , . . . , gholdern and the m target men-
tions gtarget1 , gtarget2 , . . . , gtargetm using concatena-
tion, generating a total of nm pair representations.

pi,j = [gholderi , gtargetj , φ(i, j)]

where φ represents feature vectors for the pair
(i, j).

We then pass each pairwise representation
through a linear layer. This generates scores for
each (holder mention i, target mention j, senti-
ment s) triple, where s ∈ {positive, negative,
none}.

Ai,j,s = M · pi,j
Features. For each holder-target mention pair, we
learn separate embeddings for four different sets
of features,

φ(i, j) = [φs(i, j), φc(i, j), φf (i, j), φr(i, j)]

which we append to its pairwise representation
pi,j . φs encodes how a sentence baseline model
predicted the example, with different embeddings
for positive, negative, and no sentiment predic-
tions. φc is a co-occurrence feature, represent-
ing the number of sentences in which the holder
and target both appeared. Finally, we have fea-
tures φf and φr encoding the total number of
mentions of the holder entity and target entity.
Whereas φf (“frequency”) encodes the raw num-
ber of mentions of each entity, φr (“rank”) encodes
the “rank” of the entity, with the most frequently
mentioned entity ranked 1, the second-most fre-
quently mentioned ranked 2, and so on.
Aggregation. Our data contains labels for each
entity pair, but not for each mention pair. To deal
with this, we perform multi-instance learning fol-
lowing Verga et al. (2018), whereby we train the
model over the aggregate of the mention pairs and
perform a single update for the aggregate. We
use LogSumExp as the aggregation function. This
function is a smooth approximation of the max, al-
lowing us to extract the most probable scores for
each sentiment s.

score(holder, target, s)

= log
∑

i∈{1,...n},
j∈{1,...m}

exp (Ai,j,s)

Training. We aim to maximize the log-
likelihood of the correct labels for each exam-
ple. We can represent each example by the triple
(document D, holder entity h, target entity t).

Let Y = {Positive, Negative, None} represent
the set of all possible labels for each example.
Given N training examples labelled y1, . . . , yn ∈
Y , with document D, the likelihood is given by

P (y1, . . . , yn|D,h, t)

=
N∏
i=1

P (yi|D,h, t)

=
N∏
i=1

exp (score(h, t, yi))∑
y′∈Y exp (score(h, t, y

′))

We aim to maximize the the log-likelihood

N∑
i=1

log
(exp (score(h, t, yi))∑

y′∈Y exp (score(h, t, y
′))

)
Hyperparameters. The GloVe embeddings and
learned polarity embeddings are 50-dimensional
each. All features are represent as 25-dimensional
learned embeddings. The co-occurrence feature
φc are binned into buckets: [0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10+]. The mention features φf and φr are
binned into [1, 2, 3, 4, 5+]. For the biLSTM, we
use 2 stacked layers and a hidden dimension of 50.
We apply a dropout to the input and all hidden lay-
ers of the LSTM with probability 0.2. For training,
we optimize the model using Adam with α = 1e-3
and a weight decay of 1e-5. We also set β1 = 0.9,
β2 = 0.999, ε = 1e-8. We use a batch size of 50
and train up to 10 epochs, with epoch 6 being se-
lected as the optimal epoch based on development
set performance.

4 Results

To measure our models’ performance on our task,
we use precision, recall, and F1 scores. In gen-
eral, our model, which has the capacity to per-
form cross-sentence reasoning, performs signifi-
cantly better than sentence-level baselines. For all
neural models, recall is much higher than preci-
sion if there is a sentiment (i.e. positive/negative
label), while precision is much higher than recall
if there is no sentiment (i.e. none label). Notably,
while our F1 scores on positive and negative sen-
timent do not exceed that of Choi et al. (2016),
our recalls are much higher than theirs. This sug-
gests that neural models tend to more conservative
in picking “no sentiment” labels. This addition-
ally suggests that combining aspects of both mod-
els may be beneficial.

Neg None Pos
P R F1 P R F1 P R F1

Sentence Baseline 11.3 73.0 19.6 90.6 64.8 75.6 44.8 17.1 24.7
dev- Choi et al. (2016) SVM base 25.6 36.8 30.2 47.3 36.9 41.4
eval Choi et al. (2016) SVM+ILP 37.2 35.1 36.1 58.2 37.9 45.9

Attentive biLSTM 11.8 59.7 19.9 90.1 65.8 76.0 32.5 19.9 24.7
Pairwise Attentive biLSTM 31.9 63.2 42.4 92.0 73.0 81.4 30.9 56.7 40.0

Sentence Baseline 11.8 59.7 19.9 90.1 65.8 76.0 32.5 19.9 24.7
test- Choi et al. (2016) SVM base 27.6 41.2 33.1 36.2 35.5 35.9
KBP Choi et al. (2016) SVM+ILP 34.6 36.8 35.7 45.5 32.7 38.1

Attentive biLSTM 19.1 30.4 23.5 89.6 80.3 84.7 29.3 41.8 34.4
Pairwise Attentive biLSTM 21.8 41.6 28.6 91.0 69.6 78.9 23.9 53.2 33.0

Sentence Baseline 10.8 43.8 17.4 89.0 74.1 80.9 17.5 3.5 5.9
test- Choi et al. (2016) SVM base 23.2 16.3 19.2 28.7 23.0 25.6

MPQA Choi et al. (2016) SVM+ILP 17.6 24.4 20.4 25.2 29.3 27.1
Attentive biLSTM 17.9 23.2 20.2 88.4 87.7 88.1 21.5 17.8 19.4

Pairwise Attentive biLSTM 18.8 20.5 19.6 89.3 77.6 83.0 15.3 34.9 21.3

Table 2: Results on dev-eval, test-KBP, and test-MPQA. For each sentiment class, shows precision, recall, and
f1 scores obtained by each model. Bold indicates the best score for each label among all five models, whereas
underline indicates the best score among only neural models (Sentence, Attentive biLSTM, Pairwise Attentive
biLSTM). Note that Choi et al. (2016) did not report results for the ‘None’ label.

4.1 Sentence Baseline

Socher et al. (2013) introduced a sentence-
level RNN model for classifying the sentiment
of sentences. The model takes a sentence
as input and classifies its sentiment into nega-
tive/neutral/positive. We use an adaptation of this
model to encapsulate how sentence-level models
will perform on our task. In our adaption, we be-
gin by collecting all sentences in which the holder
and target entities co-occur. We then classify each
of the sentences according to Socher et al. (2013)’s
model. We classify the pair’s sentiment as ‘none’
if the entities do not co-occur in any sentence or
if all sentences in which the entities co-occur in
are classified as ‘neutral.’ We classify the pair’s
sentiment as ‘positive’ if at least one sentence in
which the entities co-occur in is classified as ‘pos-
itive.’ Otherwise, we classify the pair’s sentiment
as ‘negative.’ Domain differences are the motiva-
tion for this split proportion, specifically the fact
that positive labels can be up to two times more
frequent than negative labels in our dataset.

Note that such a model assumes that any sen-
tence in which holder and target entities co-occur
express a single sentiment, and that the senti-
ment expressed in the sentence is the sentiment
between the entity pair. Both assumptions rep-
resent implicit limitations in sentence-level mod-

els. Pipelined approaches to sentence-level fine-
grained sentiment analysis, which first isolate sen-
timents before isolating the holders and targets of
that sentiment (Kim and Hovy, 2006), also make
these assumptions.

4.2 SVM and SVM+ILP Baseline
As additional baselines for comparison, we report
positive and negative F1 scores from Choi et al.
(2016), which is state-of-the-art for document-
level entity-entity sentiment extraction. In Choi
et al. (2016)’s SVM+ILP model, social science
theories were encoded as soft ILP constraints on
top of a base SVM pairwise classifier. We re-
port results from both the SVM base classifier and
the SVM+ILP classifier with encoded constraints.
Our model, which does not use social science con-
straints, does not ultimately outperform the final
SVM+ILP classifier. However, it comes to within
2-3 points of the SVM base classifier. It also has
significantly higher recall than either classifier.

4.3 Ablations on PABL
Results from ablating our model are shown in ta-
ble 3. We report performance on the develop-
ment data (dev-eval) for our ablation study. In
particular, we focus on the effect of removing
features. Features for number of mentions (φf
and φr) contribute the most to the final results.

NEG NONE POS
PABL (Full) 42.4 81.4 40.0
− # mentions rank (φr) 22.0 77.2 33.4
− # mentions (φf) 33.0 77.7 38.0
− co-occurrence (φc) 33.8 79.8 38.0
− sentence (φs) 37.6 79.1 37.9

Table 3: Ablations. Ablated various features and re-
ported results on dev-eval. Each feature is important in
contributing to the final F1 score.

Mention rank features (φr) contributed nearly 20
points to the f1 score on the negative label, and
4-7 points on none/negative labels. Mention fre-
quency features (φf) contributed 11 points on the
negative label and 2-4 points on none/negative la-
bels. This features are extremely predictive for
discerning whether or not entity pairs hold senti-
ment, which was by far the most challenging task
for the model, thus explaining why our model ben-
efit so much from such feature. Co-occurrence
features (φc) are the next largest contributors to
the final results. This feature also helps the model
determine whether sentiment is present. Analy-
sis on the development data shows that pairs la-
belled “none” are nearly 2 times less likely to co-
occur in any sentence. Contrarily, examples la-
belled “positive” and “negative” are 2.5-3.4 times
more likely to co-occur in at least one sentence.
Finally, despite being the least helpful, sentence
baseline features (φs) still contributed 2-5 points
to the f1 score. More thorough investigations re-
veals that this feature boosts recall on negative ex-
amples, while boosting precision on positive ex-
amples (at the sacrifice of recall). This trend is
consistent with the performance of the sentence
baseline reported in table 2, whereby the sentence
baseline achieved the highest recall on negative
examples, and the highest precision on positive ex-
amples.

4.4 Error Analysis of Neural Models

We use examples from dev-eval for error analysis.
We perform error analysis on both the sentence-
level baseline and our LSTM-based models to see
how our models’ errors compares to those made
by sentence-level models, and whether it avoids
the limitations posed by these models.
Sentence Baseline. The most major source of er-
ror in the sentence baseline comes from misalign-
ment between the sentiment of the sentence and
the actual sentiment between entities. We look

at entity pairs which co-occurred in one sentence,
since for these pairs, the sentiment of the entity
pair is exactly determined by the sentiment of the
sentence that they co-occur in. Of the entity pairs
which co-occur once, 87.5% of them co-occurred
in negatively-classified sentences, 4.4% of them
co-occurred in a neutral-classified sentences, and
the rest co-occurred in positively-classified sen-
tences. However, only 7.7% of these examples
should have been labelled negatively, while as
many as 73.5% of them should have been labelled
“none.” This misalignment alone accounted for at
least 72.8%2 of all mistakes made by the mode.

The second most common source of error is
due to the model’s inability to learn sentiment
between sentiment pairs which do not co-occur
in any sentence. In our data, at least 23.0% of
negatively-labelled pairs and 28.0% of positively-
labelled pairs do not co-occur in a sentence. Due
to its inherent limitation as a sentence-level model,
the sentence baseline is unable to classify these
pairs correctly. This accounts for 14% of all er-
rors.
LSTM-Based Models: ABL and PABL. As ob-
served, one limitation of the sentence baseline is
its inability to classify non-co-occurring pairs as
holding sentiment. On the other hand, LSTM-
based models do actually learn to classify non-co-
occurring as positive or negative. In fact, these
models have the opposite problem of being over-
zealous in doing so, with 39% of its predicted neg-
ative pairs and 35% of its predicted positive pairs
not co-occurring in any sentence. In actuality, only
23% of negative pairs and 28% of positive pairs
do not co-occur in any sentence. This mirrors
the larger trend whereby LSTM-based models are
overeager in predicting pairs as holding sentiment

Incorrectly classifying “none” examples as ei-
ther “positive” or “negative” accounted for 62.8%
and 81.5% of all errors respectively, for both the
ABL and PABL model. This trend is shown in
table 4. This is also consistent with the preci-
sion/recall scores for each label as reported in ta-
ble 2, with recall being much higher than precision
for positive and negative examples, and precision
being higher than recall for “none” examples.

The annotations themselves may contribute
to the model’s poor performance in identifying
“none” examples. “None” examples are by far

2Even this number is an underestimate as it only accounts
for mistakes made by entities which co-occurred once, over
the total number of mistakes.

Label
Neg None Pos

ABL Neg 84 213 66
Pred- None 52 1946 145
iction Pos 38 295 193
PABL Neg 130 332 94
Pred- None 29 1487 82
iction Pos 15 635 228

Table 4: Model predictions vs. actual classifications
of example for both LSTM-based models. Bold is used
to signify the most frequent prediction for each label.
The most significant source of error for both models is
the classification of “none” examples as “neg” or “pos.”
This is especially apparent for PABL.

the most difficult and subjective label to anno-
tate. As an example, different documents con-
taining the phrase “[Country] President [Person]”
were annotated differently. In some documents,
holder = [Person], target = [Country] was labelled
“positive,” whereas in others (such as the docu-
ment in the introduction) holder = [Person], target
= [Country] was labelled “none.” These inconsis-
tent annotations, especially on “none” examples,
can harm the performance of our model.

Surprisingly, the vanilla version of the pair-
wise attentive bidirectional LSTM without any
features does not outperform the attentive bidirec-
tional LSTM. However, with the addition of fea-
tures, this model receives a significant boost in
performance.

5 Related Work

Very little research has been done thus far on
document-level extraction of entity-to-entity sen-
timent relations. Of what has been done, Choi
et al. (2016) uses a SVM-based model to predict
directed opinions in text, and investigates the ef-
fect of encoding social science theories into their
model. Our work uses neural models, which re-
quire less features and thus less preprocessing.

Related work in fine-grained sentiment anal-
ysis usually focuses on one or more aspects of
the task, such as identifying sentiment expression
(İrsoy and Cardie, 2014), identifying sentiment
target (Liu et al., 2015), jointly extracting senti-
ment polarity and target (Mitchell et al., 2013), or
jointly extracting sentiment polarity, holder, and
target (Katiyar and Cardie, 2016; Yang and Cardie,
2013). The latter two tasks require combining sen-
timent analysis with NER. In this work we focus

solely on classifying sentiment polarity.
Popular approaches to fine-grained sentiment

analysis include CRFs (Yang and Cardie, 2012;
Mitchell et al., 2013) and CRF+ILP joint models
(Yang and Cardie, 2013). More recently, recur-
rent neural networks, in particular LSTMs, have
proven to be effective for this task (Liu et al.,
2015; İrsoy and Cardie, 2014). There is some con-
flicting literature in regards to how LSTMs per-
form relative to CRFs. İrsoy and Cardie (2014)
finds that multi-layer bi-directional LSTMs out-
perform CRFs on opinion expression extraction,
and Liu et al. (2015) finds that LSTMs used in con-
jugation with word embeddings outperform CRFs
on opinion target extraction without the need for
feature engineering. On the other hand, Katiyar
and Cardie (2016) finds that bi-directional LSTMs
do not outperform conventional CRFs for holder
and target extraction, but that adding sentence-
level and relation-level dependencies to the final
layer improves performance to within 1-3% of
CRF models. Almost all models in this field oper-
ate on the sentence level, where one sentiment is
being expressed between one holder and one tar-
get. Our work differs by working at the document
level, focused on capturing complex networks of
sentiments between many different entity pairs.

Our pairwise attentive biLSTM model borrows
architectural components from related fields such
as co-reference resolution and document-level re-
lation extraction. We represent mention spans by
concatenating encoded start and end tokens with
an attentive mechanism. These span representa-
tions have been used with relative success in co-
reference resolution (Lee et al., 2017), with the at-
tention component shown to be particularly use-
ful. The generation of pairwise scores between all
mentions of each entity and the use of the Log-
SumExp aggregation function over these scores
were inspired by techniques used in document-
level relation extraction, in particular the model
introduced by Verga et al. (2018).

6 Conclusion

We present two LSTM-based neural models
for document-level entity-entity sentiment anal-
ysis. Both models significantly outperform the
sentence-level baseline. We find that the sentence-
level model performs poorly on this task, suggest-
ing that current research in intra-sentence senti-
ment analysis may not generalize to document-

level texts. We additionally find that LSTM-based
models may not perform as well as state-of-the-
art SVM models. Neural models are generally
overeager in assigning sentiment between entity
pairs, producing overly dense sentiment networks
for each document.

In the future, we hope to explore means to
strategically prune excess sentiment relations. We
would also like to explore encoding social sci-
ence constraints into our model, either by en-
coding the constraints in the loss function while
training or by designing an architecture to ex-
plicitly model the constraints. Finally, joint ex-
traction of sentiment polarities, holders, and/or
targets, have proven to outperform pipelined ap-
proached to fine-grained sentiment analysis (Yang
and Cardie, 2013). These are all directions to ex-
plore in future work.

Acknowledgments

I would like to thank Eunsol Choi for her invalu-
able contributions to this work. I would also like
to thank Yejin Choi, Ari Holtzmann, and Nelson
Liu for their advice and feedback.

References
Eunsol Choi, Hannah Rashkin, Luke S. Zettlemoyer,

and Yejin Choi. 2016. Document-level sentiment in-
ference with social, faction, and discourse context.
In ACL.

Xing Fang and Justin Zhan. 2015. Sentiment analy-
sis using product review data. Journal of Big Data,
2(1):5.

Ozan İrsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 720–728.

Arzoo Katiyar and Claire Cardie. 2016. Investigating
lstms for joint extraction of opinion entities and re-
lations. ACL.

Soo-Min Kim and Eduard Hovy. 2006. Identifying
and analyzing judgment opinions. Proceedings of
the Main Conference on Human Language Technol-
ogy Conference of the North American Chapter of
the Association of Computational Linguistics, pages
200–207.

Dilek Küçük and Fazli Can. 2018. Stance detec-
tion on tweets: An svm-based approach. CoRR,
abs/1803.08910.

Guillaume Lample, Miguel Ballesteros, Sandeep K
Subramanian, Kazuya Kawakami, and Chris Dyer.

2016. Neural architectures for named entity recog-
nition. In HLT-NAACL.

Kenton Lee, Luheng He, Mike Lewis, and Luke S.
Zettlemoyer. 2017. End-to-end neural coreference
resolution. In EMNLP.

Pengfei Liu, Shafiq R. Joty, and Helen M. Meng. 2015.
Fine-grained opinion mining with recurrent neural
networks and word embeddings. In EMNLP, pages
1433–1443. The Association for Computational Lin-
guistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Margaret Mitchell, Jacqui Aguilar, Theresa Wilson,
and Benjamin Van Durme. 2013. Open domain tar-
geted sentiment. In EMNLP.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. CoRR,
abs/1308.6242.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable
are neural networks in NLP applications? CoRR,
abs/1603.06111.

Bo Pang and Lillian Lee. 2004. A sentimental
education: Sentiment analysis using subjectivity
summarization based on minimum cuts. CoRR,
cs.CL/0409058.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642, Stroudsburg, PA. Association
for Computational Linguistics.

Sotiris K. Tasoulis, Aristidis G. Vrahatis, Spiros V.
Georgakopoulos, and Vassilis P. Plagianakos. 2018.
Real time sentiment change detection of twitter data
streams. CoRR, abs/1804.00482.

Patrick Verga, Emma Strubell, and Andrew McCallum.
2018. Simultaneously self-attending to all men-
tions for full-abstract biological relation extraction.
CoRR, abs/1802.10569.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In HLT/EMNLP.

Bishan Yang and Claire Cardie. 2012. Extracting opin-
ion expressions with semi-markov conditional ran-
dom fields. In EMNLP-CoNLL.

Bishan Yang and Claire Cardie. 2013. Joint inference
for fine-grained opinion extraction. In ACL.

